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D = {[m
2k
, m+1

2k
) : k ∈ N0, m = 0, 1, . . . , 2k − 1}

I ∈ D −→ hI = −1IIleft + 1IIright .
Note that ‖hI‖∞ = 1.

Dd = {R1 × · · · ×Rd : Ri ∈ D}
R ∈ Dd −→ hR(x1, . . . , xd) =

∏d
j=1 hRj (xj)
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The small ball inequality

Conjecture: Small Ball Inequality (SBI)

Let d ≥ 2. For any n ∈ N and αR ∈ R:

n
d−2
2

∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥
∞

& 2−n
∑

|R|=2−n

|αR|
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Let d ≥ 2. For any n ∈ N and εR ∈ {±1}:∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥
∞

& n
d
2

SBI ⇒ SSBI: Notice:∑
|εR| = #{R ∈ Dd : |R| = 2−n} � nd−1 · 2n

(=shape · placement).



An L2 estimate

Notice that ‖hR‖22 = |R|, and 〈hR1 , hR2〉 = 0 for R1 6= R2.
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Struggle for power

SBI - conjecture

Let d ≥ 2. For any n ∈ N and αR ∈ R:
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d = 2: Talagrand ‘94; Temlyakov ‘95.

Tightness: random ±1 / Gaussians.

best power known: d−1
2 + η(d) for d ≥ 3

(Bilyk-Lacey-Vagharshakyan 2008)
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Motivation 1: Probability

Let Xt : T → R be a random process (usually Gaussian),
estimate the small ball probability

P
(

sup
t∈T
|Xt| < ε

)
≈ ?, ε→ 0.

The Brownian sheet in Rd+ is a Gaussian process B(t) with

E(B(s)B(t)) =
∏d
j=1 min(sj , tj).

Conjecture (Talagrand): SB for Brownian sheet, d ≥ 2

− logP(supt∈[0,1]d |B(t)| < ε) ≈ ε−2
(
log 1

ε

)2d−1
The L2 estimate is ε−2

(
log 1

ε

)2d−2
(Csáki, ‘82)

known in d = 2 (Talagrand ‘94).

LB: ε−2
(
log 1

ε

)2d−2+η
, with some η(d) > 0

(Bilyk-Lacey-Vagharshakyan ‘08).
Method: write B(t) in “wavelet” basis and use modified SBI

SBP ↔ metric entropy (Kuelbs-Li ‘93)
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Motivation 2: Discrepancy Theory

How well can a set of N points be “equidistributed” in the
d-dimensional cube?

Consider a set PN ⊂ [0, 1]d consisting of N points:

The Discrepancy function is defined as:

DN (x) = ]{PN ∩ [0, x)} −Nx1x2 . . . xd

construct a set with “low” discrepancy

universal lower bounds on discrepancy
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Low discrepancy sets

The van der Corput set with N = 212 points(
0.x1x2...xn, 0.xnxn−1...x2x1

)
, xk = 0 or 1.

Discrepancy ≈ logN



Low discrepancy sets

The irrational (α =
√

2) lattice with N = 212 points(
n/N, {nα}

)
, n = 0, 1, ..., N − 1.

Discrepancy ≈ logN



Discrepancy estimates

Lp norm (1 < p <∞):

‖DN‖p & (logN)
d−1
2 [Roth ‘54, Schmidt ‘77]

This is sharp [Davenport ‘56 ... Chen-Skriganov 00’s]

In d = 2: ‖DN‖∞ & logN [Schmidt ‘72; Halász ‘81] ;
Tight [Lerch 1904; Van der Corput 1934]

For d ≥ 3, there is η = η(d) > 0 s.t.

‖DN‖∞ & (logN)
d−1
2

+η [Bilyk-Lacey-Vagharshakyan ‘08]

For d ≥ 3, ∃PN ⊂ [0, 1]d with ‖DN‖∞ ≈ (logN)d−1

[Halton-Hammersley 1960]

Conjecture (inspired by SBI)

‖DN‖∞ & (logN)
d
2

Previously, no formal connection between SBI and discrepancy.
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Discrepancy estimates

Lp norm (1 < p <∞):

‖DN‖p & (logN)
d−1
2 [Roth ‘54, Schmidt ‘77]

This is sharp [Davenport ‘56 ... Chen-Skriganov 00’s]

L∞ norm: Conjecture: ‖DN‖∞ � (logN)
d−1
2 . How big?

In d = 2: ‖DN‖∞ & logN [Schmidt ‘72; Halász ‘81] ;
Tight [Lerch 1904; Van der Corput 1934]
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Discrepancy estimates Small Ball inequality (signed)

Dimension d = 2

‖DN‖∞ & logN

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& n

Higher dimensions, L2 bounds

‖DN‖2 & (logN)(d−1)/2
∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
2

& n(d−1)/2

Higher dimensions, conjecture

‖DN‖∞ & (logN)d/2
∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& nd/2

Higher dimensions, known results

‖DN‖∞ & (logN)
d−1
2 +η

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& n
d−1
2 +η



Motivation 3: Harmonic Analysis

dyadic Haar functions ↔ waves with lacunary frequencies.

Sidon’s theorem

Let {nk} ⊂ N be such that
nk+1

nk
≥ 1 + ε > 1. Then ∃C = C(ε)

so that for any αk ∈ R,∥∥∥∥∑
k

αk sin(2πnkx)

∥∥∥∥
∞
≥ C

∑
k

|αk|.

Open: What is the best constant C = C(ε)?

Best known: C ≈ ε
log(1/ε)

Conjecture: C ≈ ε.
Construct “extremal” sequences nk (best construction -
C ≈

√
ε).
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Discrepancy function Lacunary Fourier series

DN (x) = #{PN ∩ [0, x)} −Nx1x2 f(x) ∼
∑∞
k=1 ck sinnkx,

nk+1

nk
> λ > 1

‖DN‖2 &
√

logN ‖f‖2 ≡
√∑

|ck|2
(Roth, ’54)

‖DN‖∞ & logN ‖f‖∞ &
∑
|ck|

(Schmidt, ’72; Halász, ’81) (Sidon, ’27)

‖DN‖1 &
√

logN ‖f‖1 & ‖f‖2
(Halász, ’81) (Sidon, ’30)



Nets

Definition

A set P of N = 2m points in [0, 1)d is called a (t,m, d)- dyadic
net if every dyadic box of volume 2−m+t contains exactly 2t

points of P.

nets are of low-discrepancy; in fact “perfectly distributed”

useful for numeric integration - Monte Carlo methods

there are no perfect (t = 0) b-adic nets in d > b+ 1

for d ≥ 2 there is t = t(d) so that (t,m, d)-nets exist in any
base b
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Main result

Theorem (Bilyk, F.)

the SBI holds in d = 2 (new, elementary proof).

(0, n+ 1, 2)-net ⇐⇒ extremal set for SSBI
(i.e., arg max

∑
|R|=2−n εRhR with some εR = ±1)

#{(0, n+ 1, 2)− nets} = 2(n+1)2n

[Xiao ‘96-‘00]

similar for b-adic nets

First formal connection between SBI and discrepancy theory.

Reminder: SSBI in d = 2

For any n ∈ N and εR ∈ {±1}:∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥
∞

= n+ 1



Main result

Theorem (Bilyk, F.)

the SBI holds in d = 2 (new, elementary proof).

(0, n+ 1, 2)-net ⇐⇒ extremal set for SSBI
(i.e., arg max

∑
|R|=2−n εRhR with some εR = ±1)

#{(0, n+ 1, 2)− nets} = 2(n+1)2n [Xiao ‘96-‘00]

similar for b-adic nets

First formal connection between SBI and discrepancy theory.

Reminder: SSBI in d = 2

For any n ∈ N and εR ∈ {±1}:∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥
∞

= n+ 1



Main result

Theorem (Bilyk, F.)

the SBI holds in d = 2 (new, elementary proof).

(0, n+ 1, 2)-net ⇐⇒ extremal set for SSBI
(i.e., arg max

∑
|R|=2−n εRhR with some εR = ±1)

#{(0, n+ 1, 2)− nets} = 2(n+1)2n

[Xiao ‘96-‘00]

similar for b-adic nets

First formal connection between SBI and discrepancy theory.

Reminder: SSBI in d = 2

For any n ∈ N and εR ∈ {±1}:∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥
∞

= n+ 1



Main result

Theorem (Bilyk, F.)

the SBI holds in d = 2 (new, elementary proof).

(0, n+ 1, 2)-net ⇐⇒ extremal set for SSBI
(i.e., arg max

∑
|R|=2−n εRhR with some εR = ±1)

#{(0, n+ 1, 2)− nets} = 2(n+1)2n

[Xiao ‘96-‘00]

similar for b-adic nets

First formal connection between SBI and discrepancy theory.

Reminder: SSBI in d = 2

For any n ∈ N and εR ∈ {±1}:∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥
∞

= n+ 1



A new proof in d = 2: signed case

-1

1

1

-1

-1 1

1 -1

-2 0

0 2



A new proof in d = 2: signed case

Let Dk = {R = R1 ×R2 : |R1| = 2−k, |R2| = 2−(n−k)}

For each k = n+1
2 ,..., n− 1, n,

Fk(x) =
∑
R∈D2

k

εRhR(x) +
∑

R∈D2
n−k

εRhR(x)

Start with k = n+1
2 (if n is odd)

In each of the 2n+1 cubes of size 2−
n+1
2 × 2−

n+1
2 choose a

subcube, on which Fk = +2.

“Zoom in” into these cubes and iterate k → k + 1.

In the end we have 2n+1 cubes Qj of size 2−(n+1) × 2−(n+1),
on which all Fk = +2. Then on each Qj∑

|R|=2−n

εRhR(x) =
n∑

k=n+1
2

Fk(x) =
n+ 1

2
· 2 = n+ 1.



A new proof in d = 2: signed case

Let Dk = {R = R1 ×R2 : |R1| = 2−k, |R2| = 2−(n−k)}
For each k = n+1

2 ,..., n− 1, n,

Fk(x) =
∑
R∈D2

k

εRhR(x) +
∑

R∈D2
n−k

εRhR(x)

Start with k = n+1
2 (if n is odd)

In each of the 2n+1 cubes of size 2−
n+1
2 × 2−

n+1
2 choose a

subcube, on which Fk = +2.

“Zoom in” into these cubes and iterate k → k + 1.

In the end we have 2n+1 cubes Qj of size 2−(n+1) × 2−(n+1),
on which all Fk = +2. Then on each Qj∑

|R|=2−n

εRhR(x) =
n∑

k=n+1
2

Fk(x) =
n+ 1

2
· 2 = n+ 1.



A new proof in d = 2: signed case

Let Dk = {R = R1 ×R2 : |R1| = 2−k, |R2| = 2−(n−k)}
For each k = n+1

2 ,..., n− 1, n,

Fk(x) =
∑
R∈D2

k

εRhR(x) +
∑

R∈D2
n−k

εRhR(x)

Start with k = n+1
2 (if n is odd)

In each of the 2n+1 cubes of size 2−
n+1
2 × 2−

n+1
2 choose a

subcube, on which Fk = +2.

“Zoom in” into these cubes and iterate k → k + 1.

In the end we have 2n+1 cubes Qj of size 2−(n+1) × 2−(n+1),
on which all Fk = +2. Then on each Qj∑

|R|=2−n

εRhR(x) =
n∑

k=n+1
2

Fk(x) =
n+ 1

2
· 2 = n+ 1.



A new proof in d = 2: signed case

Let Dk = {R = R1 ×R2 : |R1| = 2−k, |R2| = 2−(n−k)}
For each k = n+1

2 ,..., n− 1, n,

Fk(x) =
∑
R∈D2

k

εRhR(x) +
∑

R∈D2
n−k

εRhR(x)

Start with k = n+1
2 (if n is odd)

In each of the 2n+1 cubes of size 2−
n+1
2 × 2−

n+1
2 choose a

subcube, on which Fk = +2.

“Zoom in” into these cubes and iterate k → k + 1.

In the end we have 2n+1 cubes Qj of size 2−(n+1) × 2−(n+1),
on which all Fk = +2. Then on each Qj∑

|R|=2−n

εRhR(x) =
n∑

k=n+1
2

Fk(x) =
n+ 1

2
· 2 = n+ 1.



A new proof in d = 2: signed case

Let Dk = {R = R1 ×R2 : |R1| = 2−k, |R2| = 2−(n−k)}
For each k = n+1

2 ,..., n− 1, n,

Fk(x) =
∑
R∈D2

k

εRhR(x) +
∑

R∈D2
n−k

εRhR(x)

Start with k = n+1
2 (if n is odd)

In each of the 2n+1 cubes of size 2−
n+1
2 × 2−

n+1
2 choose a

subcube, on which Fk = +2.

“Zoom in” into these cubes and iterate k → k + 1.

In the end we have 2n+1 cubes Qj of size 2−(n+1) × 2−(n+1),
on which all Fk = +2. Then on each Qj∑

|R|=2−n

εRhR(x) =
n∑

k=n+1
2

Fk(x) =
n+ 1

2
· 2 = n+ 1.



A new proof in d = 2: signed case

Let Dk = {R = R1 ×R2 : |R1| = 2−k, |R2| = 2−(n−k)}
For each k = n+1

2 ,..., n− 1, n,

Fk(x) =
∑
R∈D2

k

εRhR(x) +
∑

R∈D2
n−k

εRhR(x)

Start with k = n+1
2 (if n is odd)

In each of the 2n+1 cubes of size 2−
n+1
2 × 2−

n+1
2 choose a

subcube, on which Fk = +2.

“Zoom in” into these cubes and iterate k → k + 1.

In the end we have 2n+1 cubes Qj of size 2−(n+1) × 2−(n+1),
on which all Fk = +2. Then on each Qj∑

|R|=2−n

εRhR(x) =

n∑
k=n+1

2

Fk(x) =
n+ 1

2
· 2 = n+ 1.



A new proof in d = 2: signed case

-1

1

1

-1

-1 1

1 -1

-2 0

0 2



Connection to binary nets

At the initial step each rectangle contains exactly two
chosen squares.

They lie in the opposite quarters of the rectangle, since
εRhR(x) ≥ 0

At each following step every rectangle R will contain
exactly two previously chosen squares.

We further choose a sub square in each of those and they
have to lie in the opposite quarters of R.
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Connection to binary nets

Since every dyadic R with |R| = 2−n contains exactly two
of the 2n+1 chosen squares, the extremal set is a
(1, n+ 1, 2)-net in base b = 2.

Since in every such R these points lie in opposite quarters,
it is actually a (0, n+ 1, 2)-net in base b = 2.

Each dyadic (0, n+ 1, 2)-net P may be obtained this way
(may choose εR so that all terms are +1 on the net!)

The total number of different binary (0,m, 2)-nets is

2#{R:|R|=2−n} = 2(n+1)2n
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Examples of two-dimensional nets

εR ≡ +1: Van der Corput set.(
0.x1x2...xn, 0.xnxn−1...x2x1

)
, xk = 0 or 1

If εR depends only on the geometry of R, i.e.
εR = ε(|R1|, |R2|): digit-shifted VdC(
0.x1x2...xn, 0.(xn ⊕ σn)...(x1 ⊕ σ1)

)
, σ ∈ {0, 1}n

If the coefficients have product structure, i.e.
εR1×R2 = εR1 · εR2 : Owen’s scrambling of VdC.
SSBI proved in all dimensions [Karslidis 2015].
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A new proof in d = 2: general case

At each step choose the subcube Qj where

Fk(x) = |αR′ |+ |αR′′ |.

Then

∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞
≥ max

j=1,...,2n+1

∑
R⊃Qj

∣∣αR∣∣

≥ 1

2n+1

∑
Qj

∑
R⊃Qj

∣∣αR∣∣
=

1

2n+1

∑
|R|=2−n

∣∣αR∣∣ ∑
Qj⊂R

1

= 2−n
∑

|R|=2−n

∣∣αR∣∣
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Dimension reduction: “signed” case

Lemma

Let d ≥ 2. Assume that in dimension d′ = d− 1 for all εR = ±1
we have: ∥∥∥∥ ∑

|R|≥2−n

εRhR

∥∥∥∥
∞

& n
d′+1

2 = n
d
2 .

Then in dimension d for all εR = ±1 we have:∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

& n
d
2 .

In dimension d = 2 equivalent.∥∥∑
|R|≥2−n εRhR

∥∥
2
& nd

′/2

d = 2⇒ d′ = 1: the bound
∥∥∑

|I|≥2−n εIhI
∥∥
∞ ≥ n is
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Dimension reduction: general case

In dimension d′ = 1 a proper analog would be:∥∥∥∥ ∑
I∈D: |I|≥2−n

αIhI

∥∥∥∥
∞

&
∑
|I|≥2−n

∣∣αI ∣∣ · |I|.
This would imply the general small ball inequality in d = 2

This would imply SSBI in all dimensions d ≥ 2!

Unfortunately this inequality is NOT true in general!
(counter-example by Ohad Feldheim, with αI ∈ {0, 1})
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Related methods in Analysis

SSBI proof by Temlyakov:

Hn =
∑

R: |R|=2−n

εRhR

Set fk =
∑

R: |R1|=2−k

εRhR, k = 0, 1, . . . , n

Construct a Riesz product:

Ψ
def
=

n∏
k=0

(1 + fk)∥∥Ψ
∥∥
1

= 1 (since Ψ ≥ 0 and
∫

Ψ = 1)

⇒
∥∥Hn∥∥∞ ≥ 〈Hn,Ψ〉 =

∑
R: |R|=2−n

2−n ≈ n

Ψ
def
=
∏n
k=0 (1 + fk) =

{
2n+1 if fk = +1 for all k,

0 otherwise.
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Related methods in Analysis

Proofs of Sidon’s theorem:

1 Riesz product:
∏K
k=1(1 + εk cosnkx)

2 “zooming in”: suppose nk+1/nk ≥ 9. At step k look at

Bk = {x ∈ [0, 1] : αk sin(2πnkx) ≥ 1

2
|αk|}

Each interval of Bk contains at least 3 periods of
sin(2πnk+1x), in particular contains an interval of Bk+1.
On ∩Bk we have

∑
k αk sin(2πnkx) ≥ 1

2

∑
k |αk|.



Thank you.



b-adic nets

Theorem

Fix m ∈ N and b ≥ 2. For each R ∈ D2
b with |R| = b−(m−1), choose a

function φR ∈ HR.

(i) b-adic SSBI holds: maxx∈[0,1)2
∑
|R|=b−(m−1) φR(x) = m.

(ii) The set on which the maximum is achieved is a (0,m, 2)-net in
base b.

(iii) Each (0,m, 2)-net in base b may be obtained this way

(iv) The number of different (0,m, 2)-nets in base b is (b!)mb
m−1

.

φR ∈ HR

1

-1

-1

-1

-1

1

-1

1

-1


