The small ball inequality and binary nets

Naomi Feldheim (Stanford University)
j.w. Dmitriy Bilyk (University of Minnesota)

IMU meeting
Dead Sea, June 2016

Outline

- What is the "Small Ball Inequality" (SBI)
- Motivation
- Results: new connection with nets
- Proofs
- Ideas for higher dimensions
- Related methods in analysis
- $\mathcal{D}=\left\{\left[\frac{m}{2^{k}}, \frac{m+1}{2^{k}}\right): \quad k \in \mathbb{N}_{0}, \quad m=0,1, \ldots, 2^{k}-1\right\}$
- $I \in \mathcal{D} \longrightarrow h_{I}=-\mathbb{I}_{I_{\text {left }}}+\mathbb{1}_{I_{\text {right }}}$.

Note that $\left\|h_{I}\right\|_{\infty}=1$.

- $\mathcal{D}=\left\{\left[\frac{m}{2^{k}}, \frac{m+1}{2^{k}}\right): \quad k \in \mathbb{N}_{0}, \quad m=0,1, \ldots, 2^{k}-1\right\}$
- $I \in \mathcal{D} \longrightarrow h_{I}=-\mathbb{I}_{I_{\text {left }}}+\mathbb{1}_{I_{\text {right }}}$.

Note that $\left\|h_{I}\right\|_{\infty}=1$.

- $\mathcal{D}^{d}=\left\{R_{1} \times \cdots \times R_{d}: \quad R_{i} \in D\right\}$
- $\mathcal{D}=\left\{\left[\frac{m}{2^{k}}, \frac{m+1}{2^{k}}\right): \quad k \in \mathbb{N}_{0}, \quad m=0,1, \ldots, 2^{k}-1\right\}$
- $I \in \mathcal{D} \longrightarrow h_{I}=-\mathbb{I}_{I_{\text {left }}}+\mathbb{I}_{I_{\text {right }}}$.

Note that $\left\|h_{I}\right\|_{\infty}=1$.

- $\mathcal{D}^{d}=\left\{R_{1} \times \cdots \times R_{d}: \quad R_{i} \in D\right\}$
- $R \in \mathcal{D}^{d} \longrightarrow h_{R}\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d} h_{R_{j}}\left(x_{j}\right)$
- $\mathcal{D}=\left\{\left[\frac{m}{2^{k}}, \frac{m+1}{2^{k}}\right): \quad k \in \mathbb{N}_{0}, \quad m=0,1, \ldots, 2^{k}-1\right\}$
- $I \in \mathcal{D} \longrightarrow h_{I}=-\mathbb{I}_{I_{\text {left }}}+\mathbb{I}_{I_{\text {right }}}$.

Note that $\left\|h_{I}\right\|_{\infty}=1$.

- $\mathcal{D}^{d}=\left\{R_{1} \times \cdots \times R_{d}: \quad R_{i} \in D\right\}$
- $R \in \mathcal{D}^{d} \longrightarrow h_{R}\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d} h_{R_{j}}\left(x_{j}\right)$

The small ball inequality

Conjecture: Small Ball Inequality (SBI)
Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-2}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

The small ball inequality

Conjecture: Small Ball Inequality (SBI)

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-2}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

- The constant in \gtrsim depends on d, not on n
- "reverse triangle inequality"

The small ball inequality

Conjecture: Small Ball Inequality (SBI)
Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-2}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

Conjecture: Signed Small Ball Inequality (SSBI)
Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\varepsilon_{R} \in\{ \pm 1\}$:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d}{2}}
$$

The small ball inequality

Conjecture: Small Ball Inequality (SBI)

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-2}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

Conjecture: Signed Small Ball Inequality (SSBI)
Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\varepsilon_{R} \in\{ \pm 1\}$:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d}{2}}
$$

SBI \Rightarrow SSBI: Notice:

$$
\sum\left|\varepsilon_{R}\right|=\#\left\{R \in \mathcal{D}^{d}:|R|=2^{-n}\right\} \asymp n^{d-1} \cdot 2^{n}
$$

(=shape • placement).

An L^{2} estimate

Notice that $\left\|h_{R}\right\|_{2}^{2}=|R|$, and $\left\langle h_{R_{1}}, h_{R_{2}}\right\rangle=0$ for $R_{1} \neq R_{2}$.

An L^{2} estimate

Notice that $\left\|h_{R}\right\|_{2}^{2}=|R|$, and $\left\langle h_{R_{1}}, h_{R_{2}}\right\rangle=0$ for $R_{1} \neq R_{2}$.

$$
\begin{aligned}
\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{2} & =\left(\sum_{|R|=2^{-n}}\left|\alpha_{R}\right|^{2} 2^{-n}\right)^{1 / 2} \\
& { }^{C-S} \\
& \gtrsim \frac{\sum\left|\alpha_{R}\right| 2^{-n / 2}}{\left(n^{d-1} 2^{n}\right)^{1 / 2}} \\
& =n^{-\frac{d-1}{2}} 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
\end{aligned}
$$

An L^{2} estimate

Notice that $\left\|h_{R}\right\|_{2}^{2}=|R|$, and $\left\langle h_{R_{1}}, h_{R_{2}}\right\rangle=0$ for $R_{1} \neq R_{2}$.

$$
\begin{aligned}
\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{2} & =\left(\sum_{|R|=2^{-n}}\left|\alpha_{R}\right|^{2} 2^{-n}\right)^{1 / 2} \\
& \stackrel{C-S}{\sum\left|\alpha_{R}\right| 2^{-n / 2}} \\
& \left.\gtrsim n^{d-1} 2^{n}\right)^{1 / 2} \\
& =n^{-\frac{d-1}{2}} 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
\end{aligned}
$$

SBI - L^{2} estimate

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-1}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

An L^{2} estimate

SBI - L^{2} estimate

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-1}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

SSBI - L^{2} estimate
Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\varepsilon_{R} \in\{ \pm 1\}$:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d-1}{2}}
$$

Struggle for power

SBI - conjecture

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-2}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

SSBI - conjecture

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\varepsilon_{R} \in\{ \pm 1\}$:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d}{2}}
$$

Struggle for power

SBI - conjecture

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-2}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

SSBI - conjecture

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\varepsilon_{R} \in\{ \pm 1\}$:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d}{2}}
$$

- $d=2$: Talagrand '94; Temlyakov '95.

Struggle for power

SBI - conjecture

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-2}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

SSBI - conjecture

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\varepsilon_{R} \in\{ \pm 1\}$:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d}{2}}
$$

- $d=2$: Talagrand '94; Temlyakov '95.
- Tightness: random ± 1 / Gaussians.

Struggle for power

SBI - conjecture

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\alpha_{R} \in \mathbb{R}$:

$$
n^{\frac{d-2}{2}}\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \gtrsim 2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
$$

SSBI - conjecture

Let $d \geq 2$. For any $n \in \mathbb{N}$ and $\varepsilon_{R} \in\{ \pm 1\}$:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d}{2}}
$$

- $d=2$: Talagrand '94; Temlyakov '95.
- Tightness: random ± 1 / Gaussians.
- best power known: $\frac{d-1}{2}+\eta(d)$ for $d \geq 3$
(Bilyk-Lacey-Vagharshakyan 2008)

Motivation 1: Probability

Let $X_{t}: T \rightarrow \mathbb{R}$ be a random process (usually Gaussian), estimate the small ball probability

$$
\mathbb{P}\left(\sup _{t \in T}\left|X_{t}\right|<\varepsilon\right) \approx ?, \quad \varepsilon \rightarrow 0
$$

Motivation 1: Probability

Let $X_{t}: T \rightarrow \mathbb{R}$ be a random process (usually Gaussian), estimate the small ball probability

$$
\mathbb{P}\left(\sup _{t \in T}\left|X_{t}\right|<\varepsilon\right) \approx ?, \quad \varepsilon \rightarrow 0
$$

The Brownian sheet in \mathbb{R}_{+}^{d} is a Gaussian process $B(t)$ with $\mathbb{E}(B(s) B(t))=\prod_{j=1}^{d} \min \left(s_{j}, t_{j}\right)$.

Motivation 1: Probability

Let $X_{t}: T \rightarrow \mathbb{R}$ be a random process (usually Gaussian), estimate the small ball probability

$$
\mathbb{P}\left(\sup _{t \in T}\left|X_{t}\right|<\varepsilon\right) \approx ?, \quad \varepsilon \rightarrow 0
$$

The Brownian sheet in \mathbb{R}_{+}^{d} is a Gaussian process $B(t)$ with $\mathbb{E}(B(s) B(t))=\prod_{j=1}^{d} \min \left(s_{j}, t_{j}\right)$.

Conjecture (Talagrand): SB for Brownian sheet, $d \geq 2$
$-\log \mathbb{P}\left(\sup _{t \in[0,1]^{d}}|B(t)|<\varepsilon\right) \approx \varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-1}$

Motivation 1: Probability

Let $X_{t}: T \rightarrow \mathbb{R}$ be a random process (usually Gaussian), estimate the small ball probability

$$
\mathbb{P}\left(\sup _{t \in T}\left|X_{t}\right|<\varepsilon\right) \approx ?, \quad \varepsilon \rightarrow 0
$$

The Brownian sheet in \mathbb{R}_{+}^{d} is a Gaussian process $B(t)$ with $\mathbb{E}(B(s) B(t))=\prod_{j=1}^{d} \min \left(s_{j}, t_{j}\right)$.

Conjecture (Talagrand): SB for Brownian sheet, $d \geq 2$
$-\log \mathbb{P}\left(\sup _{t \in[0,1]^{d}}|B(t)|<\varepsilon\right) \approx \varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-1}$

- The L^{2} estimate is $\varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-2}$ (Csáki, ‘82)

Motivation 1: Probability

Let $X_{t}: T \rightarrow \mathbb{R}$ be a random process (usually Gaussian), estimate the small ball probability

$$
\mathbb{P}\left(\sup _{t \in T}\left|X_{t}\right|<\varepsilon\right) \approx ?, \quad \varepsilon \rightarrow 0
$$

The Brownian sheet in \mathbb{R}_{+}^{d} is a Gaussian process $B(t)$ with $\mathbb{E}(B(s) B(t))=\prod_{j=1}^{d} \min \left(s_{j}, t_{j}\right)$.

Conjecture (Talagrand): SB for Brownian sheet, $d \geq 2$

$-\log \mathbb{P}\left(\sup _{t \in[0,1]^{d}}|B(t)|<\varepsilon\right) \approx \varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-1}$

- The L^{2} estimate is $\varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-2}$ (Csáki, '82)
- known in $d=2$ (Talagrand '94).

Motivation 1: Probability

Let $X_{t}: T \rightarrow \mathbb{R}$ be a random process (usually Gaussian), estimate the small ball probability

$$
\mathbb{P}\left(\sup _{t \in T}\left|X_{t}\right|<\varepsilon\right) \approx ?, \quad \varepsilon \rightarrow 0
$$

The Brownian sheet in \mathbb{R}_{+}^{d} is a Gaussian process $B(t)$ with $\mathbb{E}(B(s) B(t))=\prod_{j=1}^{d} \min \left(s_{j}, t_{j}\right)$.

Conjecture (Talagrand): SB for Brownian sheet, $d \geq 2$

$-\log \mathbb{P}\left(\sup _{t \in[0,1]^{d}}|B(t)|<\varepsilon\right) \approx \varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-1}$

- The L^{2} estimate is $\varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-2}$ (Csáki, ‘82)
- known in $d=2$ (Talagrand '94).
- LB: $\varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-2+\eta}$, with some $\eta(d)>0$
(Bilyk-Lacey-Vagharshakyan ‘08).
Method: write $B(t)$ in "wavelet" basis and use modified SBI

Motivation 1: Probability

Let $X_{t}: T \rightarrow \mathbb{R}$ be a random process (usually Gaussian), estimate the small ball probability

$$
\mathbb{P}\left(\sup _{t \in T}\left|X_{t}\right|<\varepsilon\right) \approx ?, \quad \varepsilon \rightarrow 0
$$

The Brownian sheet in \mathbb{R}_{+}^{d} is a Gaussian process $B(t)$ with $\mathbb{E}(B(s) B(t))=\prod_{j=1}^{d} \min \left(s_{j}, t_{j}\right)$.

Conjecture (Talagrand): SB for Brownian sheet, $d \geq 2$

$-\log \mathbb{P}\left(\sup _{t \in[0,1]^{d}}|B(t)|<\varepsilon\right) \approx \varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-1}$

- The L^{2} estimate is $\varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-2}$ (Csáki, ‘82)
- known in $d=2$ (Talagrand '94).
- LB: $\varepsilon^{-2}\left(\log \frac{1}{\varepsilon}\right)^{2 d-2+\eta}$, with some $\eta(d)>0$
(Bilyk-Lacey-Vagharshakyan ‘08).
Method: write $B(t)$ in "wavelet" basis and use modified SBI
- SBP \leftrightarrow metric entropy (Kuelbs-Li '93)

Motivation 2: Discrepancy Theory

How well can a set of N points be "equidistributed" in the d-dimensional cube?

Motivation 2: Discrepancy Theory

How well can a set of N points be "equidistributed" in the d-dimensional cube?
Consider a set $\mathcal{P}_{N} \subset[0,1]^{d}$ consisting of N points:

Motivation 2: Discrepancy Theory

How well can a set of N points be "equidistributed" in the d-dimensional cube?
Consider a set $\mathcal{P}_{N} \subset[0,1]^{d}$ consisting of N points:

The Discrepancy function is defined as:

$$
D_{N}(x)=\sharp\left\{\mathcal{P}_{N} \cap[0, x)\right\}-N x_{1} x_{2} \ldots x_{d}
$$

Motivation 2: Discrepancy Theory

How well can a set of N points be "equidistributed" in the d-dimensional cube?
Consider a set $\mathcal{P}_{N} \subset[0,1]^{d}$ consisting of N points:

The Discrepancy function is defined as:

$$
D_{N}(x)=\sharp\left\{\mathcal{P}_{N} \cap[0, x)\right\}-N x_{1} x_{2} \ldots x_{d}
$$

- construct a set with "low" discrepancy
- universal lower bounds on discrepancy

The van der Corput set with $N=2^{12}$ points
($0 . x_{1} x_{2} \ldots x_{n}, 0 . x_{n} x_{n-1} \ldots x_{2} x_{1}$), $x_{k}=0$ or 1 .
Discrepancy $\approx \log N$

The irrational $(\alpha=\sqrt{2})$ lattice with $N=2^{12}$ points

$$
(n / N,\{n \alpha\}), \quad n=0,1, \ldots, N-1
$$

Discrepancy $\approx \log N$

Discrepancy estimates

L^{p} norm $(1<p<\infty)$:
$\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{\frac{d-1}{2}} \quad[$ Roth '54, Schmidt '77]
This is sharp [Davenport '56 ... Chen-Skriganov 00's]

Discrepancy estimates

L^{p} norm $(1<p<\infty)$:
$\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{\frac{d-1}{2}}[$ Roth '54, Schmidt '77]
This is sharp [Davenport '56 ... Chen-Skriganov 00's]
Main idea: $D_{N} \approx \sum_{R:|R| \approx \frac{1}{N}} \frac{\left\langle D_{N}, h_{R}\right\rangle}{|R|} h_{R}$

Discrepancy estimates

L^{p} norm $(1<p<\infty)$:
$\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{\frac{d-1}{2}} \quad[$ Roth '54, Schmidt '77]
This is sharp [Davenport '56 ... Chen-Skriganov 00's]
L^{∞} norm: Conjecture: $\left\|D_{N}\right\|_{\infty} \gg(\log N)^{\frac{d-1}{2}}$. How big?

Discrepancy estimates

L^{p} norm $(1<p<\infty)$:
$\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{\frac{d-1}{2}}$ [Roth ' 54, Schmidt ' 77$]$
This is sharp [Davenport '56 ... Chen-Skriganov 00's]
L^{∞} norm: Conjecture: $\left\|D_{N}\right\|_{\infty} \gg(\log N)^{\frac{d-1}{2}}$. How big?

- In $d=2:\left\|D_{N}\right\|_{\infty} \gtrsim \log N$ [Schmidt '72; Halász '81] ; Tight [Lerch 1904; Van der Corput 1934]

Discrepancy estimates

L^{p} norm $(1<p<\infty)$:
$\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{\frac{d-1}{2}}$ [Roth '54, Schmidt '77]
This is sharp [Davenport '56 ... Chen-Skriganov 00's]
L^{∞} norm: Conjecture: $\left\|D_{N}\right\|_{\infty} \gg(\log N)^{\frac{d-1}{2}}$. How big?

- In $d=2:\left\|D_{N}\right\|_{\infty} \gtrsim \log N$ [Schmidt '72; Halász '81] ; Tight [Lerch 1904; Van der Corput 1934]
- For $d \geq 3$, there is $\eta=\eta(d)>0$ s.t.

$$
\left\|D_{N}\right\|_{\infty} \gtrsim(\log N)^{\frac{d-1}{2}+\eta}[\text { Bilyk-Lacey-Vagharshakyan '08] }
$$

L^{p} norm $(1<p<\infty)$:
$\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{\frac{d-1}{2}}$ [Roth '54, Schmidt '77]
This is sharp [Davenport '56 ... Chen-Skriganov 00's]
L^{∞} norm: Conjecture: $\left\|D_{N}\right\|_{\infty} \gg(\log N)^{\frac{d-1}{2}}$. How big?

- In $d=2:\left\|D_{N}\right\|_{\infty} \gtrsim \log N$ [Schmidt '72; Halász '81] ; Tight [Lerch 1904; Van der Corput 1934]
- For $d \geq 3$, there is $\eta=\eta(d)>0$ s.t.
$\left\|D_{N}\right\|_{\infty} \gtrsim(\log N)^{\frac{d-1}{2}+\eta}$ [Bilyk-Lacey-Vagharshakyan '08]
- For $d \geq 3, \exists \mathcal{P}_{N} \subset[0,1]^{d}$ with $\left\|D_{N}\right\|_{\infty} \approx(\log N)^{d-1}$
[Halton-Hammersley 1960]

Discrepancy estimates

L^{p} norm $(1<p<\infty)$:
$\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{\frac{d-1}{2}}$ [Roth '54, Schmidt '77]
This is sharp [Davenport '56 ... Chen-Skriganov 00's]
L^{∞} norm: Conjecture: $\left\|D_{N}\right\|_{\infty} \gg(\log N)^{\frac{d-1}{2}}$. How big?

- In $d=2:\left\|D_{N}\right\|_{\infty} \gtrsim \log N$ [Schmidt '72; Halász '81] ; Tight [Lerch 1904; Van der Corput 1934]
- For $d \geq 3$, there is $\eta=\eta(d)>0$ s.t.
$\left\|D_{N}\right\|_{\infty} \gtrsim(\log N)^{\frac{d-1}{2}+\eta}$ [Bilyk-Lacey-Vagharshakyan '08]
- For $d \geq 3, \exists \mathcal{P}_{N} \subset[0,1]^{d}$ with $\left\|D_{N}\right\|_{\infty} \approx(\log N)^{d-1}$ [Halton-Hammersley 1960]

Conjecture (inspired by SBI)

$\left\|D_{N}\right\|_{\infty} \gtrsim(\log N)^{\frac{d}{2}}$

Discrepancy estimates

L^{p} norm $(1<p<\infty)$:
$\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{\frac{d-1}{2}}$ [Roth '54, Schmidt ' 77$]$
This is sharp [Davenport '56 ... Chen-Skriganov 00's]
L^{∞} norm: Conjecture: $\left\|D_{N}\right\|_{\infty} \gg(\log N)^{\frac{d-1}{2}}$. How big?

- In $d=2:\left\|D_{N}\right\|_{\infty} \gtrsim \log N$ [Schmidt '72; Halász '81] ; Tight [Lerch 1904; Van der Corput 1934]
- For $d \geq 3$, there is $\eta=\eta(d)>0$ s.t.
$\left\|D_{N}\right\|_{\infty} \gtrsim(\log N)^{\frac{d-1}{2}+\eta}$ [Bilyk-Lacey-Vagharshakyan '08]
- For $d \geq 3, \exists \mathcal{P}_{N} \subset[0,1]^{d}$ with $\left\|D_{N}\right\|_{\infty} \approx(\log N)^{d-1}$ [Halton-Hammersley 1960]

Conjecture (inspired by SBI)

$\left\|D_{N}\right\|_{\infty} \gtrsim(\log N)^{\frac{d}{2}}$
Previously, no formal connection between SBI and discrepancy.

Discrepancy estimates	Small Ball inequality (signed)				
Dimension $d=2$					
$\left\\|D_{N}\right\\|_{\infty} \gtrsim \log N$	$\left\\|\sum_{\|R\|=2^{-n}} \varepsilon_{R} h_{R}\right\\|_{\infty} \gtrsim n$				
Higher dimensions, L^{2} bounds					
$\left\\|D_{N}\right\\|_{2} \gtrsim(\log N)^{(d-1) / 2}$	$\left\\|\sum_{\|R\|=2^{-n}} \varepsilon_{R} h_{R}\right\\|_{2} \gtrsim n^{(d-1) / 2}$				
Higher dimensions, conjecture					
$\left\\|D_{N}\right\\|_{\infty} \gtrsim(\log N)^{d / 2}$	$\left\\|\sum_{\|R\|=2^{-n}} \varepsilon_{R} h_{R}\right\\|_{\infty} \gtrsim n^{d / 2}$				
Higher dimensions, known results					
$\left\\|D_{N}\right\\|_{\infty} \gtrsim(\log N)^{\frac{d-1}{2}+\eta}$	$\left\\|\sum_{\|R\|=2^{-n}} \varepsilon_{R} h_{R}\right\\|_{\infty} \gtrsim n^{\frac{d-1}{2}+\eta}$				

Motivation 3: Harmonic Analysis

dyadic Haar functions \leftrightarrow waves with lacunary frequencies.

Motivation 3: Harmonic Analysis

dyadic Haar functions \leftrightarrow waves with lacunary frequencies.

Sidon's theorem

Let $\left\{n_{k}\right\} \subset \mathbb{N}$ be such that $\frac{n_{k+1}}{n_{k}} \geq 1+\varepsilon>1$. Then $\exists C=C(\varepsilon)$ so that for any $\alpha_{k} \in \mathbb{R}$,

$$
\left\|\sum_{k} \alpha_{k} \sin \left(2 \pi n_{k} x\right)\right\|_{\infty} \geq C \sum_{k}\left|\alpha_{k}\right|
$$

Motivation 3: Harmonic Analysis

dyadic Haar functions \leftrightarrow waves with lacunary frequencies.

Sidon's theorem

Let $\left\{n_{k}\right\} \subset \mathbb{N}$ be such that $\frac{n_{k+1}}{n_{k}} \geq 1+\varepsilon>1$. Then $\exists C=C(\varepsilon)$ so that for any $\alpha_{k} \in \mathbb{R}$,

$$
\left\|\sum_{k} \alpha_{k} \sin \left(2 \pi n_{k} x\right)\right\|_{\infty} \geq C \sum_{k}\left|\alpha_{k}\right|
$$

Open: What is the best constant $C=C(\varepsilon)$?

Motivation 3: Harmonic Analysis

dyadic Haar functions \leftrightarrow waves with lacunary frequencies.

Sidon's theorem

Let $\left\{n_{k}\right\} \subset \mathbb{N}$ be such that $\frac{n_{k+1}}{n_{k}} \geq 1+\varepsilon>1$. Then $\exists C=C(\varepsilon)$ so that for any $\alpha_{k} \in \mathbb{R}$,

$$
\left\|\sum_{k} \alpha_{k} \sin \left(2 \pi n_{k} x\right)\right\|_{\infty} \geq C \sum_{k}\left|\alpha_{k}\right|
$$

Open: What is the best constant $C=C(\varepsilon)$?

- Best known: $C \approx \frac{\varepsilon}{\log (1 / \varepsilon)}$
- Conjecture: $C \approx \varepsilon$.
- Construct "extremal" sequences n_{k} (best construction $C \approx \sqrt{\varepsilon})$.

Discrepancy function $D_{N}(x)=\#\left\{\mathcal{P}_{N} \cap[0, x)\right\}-N x_{1} x_{2}$	Lacunary Fourier series $\begin{gathered} f(x) \underset{\frac{n_{k+1}}{n_{k}}>\sum_{k=1}^{\infty} c_{k} \sin n_{k} x,}{ }=1 \end{gathered}$					
$\left\\|D_{N}\right\\|_{2} \gtrsim \sqrt{\log N}$ (Roth, '54)	$\\|f\\|_{2} \equiv \sqrt{\sum\left\|c_{k}\right\|^{2}}$					
$\begin{gathered} \left\\|D_{N}\right\\|_{\infty} \gtrsim \log N \\ \text { (Schmidt, }{ }^{\prime} 72 ; \text { Halász, '81) } \end{gathered}$	$\\|f\\|_{\infty} \gtrsim \sum \mid c_{k}$ (Sidon, '27)					
$\begin{gathered} \left\\|D_{N}\right\\|_{1} \gtrsim \sqrt{\log N} \\ \text { (Halász, ' } 81 \text {) } \end{gathered}$	$f\left\\|_{1} \gtrsim\right\\| f \\|_{2}$ (Sidon, '30)					

Definition

A set \mathcal{P} of $N=2^{m}$ points in $[0,1)^{d}$ is called a (t, m, d)-dyadic net if every dyadic box of volume 2^{-m+t} contains exactly 2^{t} points of \mathcal{P}.

Definition

A set \mathcal{P} of $N=b^{m}$ points in $[0,1)^{d}$ is called a (t, m, d)-net in base b if every b-adic box of volume b^{-m+t} contains exactly b^{t} points of \mathcal{P}.

Definition

A set \mathcal{P} of $N=b^{m}$ points in $[0,1)^{d}$ is called a (t, m, d)-net in base b if every b-adic box of volume b^{-m+t} contains exactly b^{t} points of \mathcal{P}.

- nets are of low-discrepancy; in fact "perfectly distributed"

Definition

A set \mathcal{P} of $N=b^{m}$ points in $[0,1)^{d}$ is called a (t, m, d)-net in base b if every b-adic box of volume b^{-m+t} contains exactly b^{t} points of \mathcal{P}.

- nets are of low-discrepancy; in fact "perfectly distributed"
- useful for numeric integration - Monte Carlo methods

Definition

A set \mathcal{P} of $N=b^{m}$ points in $[0,1)^{d}$ is called a (t, m, d)-net in base b if every b-adic box of volume b^{-m+t} contains exactly b^{t} points of \mathcal{P}.

- nets are of low-discrepancy; in fact "perfectly distributed"
- useful for numeric integration - Monte Carlo methods
- there are no perfect $(t=0) b$-adic nets in $d>b+1$

Definition

A set \mathcal{P} of $N=b^{m}$ points in $[0,1)^{d}$ is called a (t, m, d)-net in base b if every b-adic box of volume b^{-m+t} contains exactly b^{t} points of \mathcal{P}.

- nets are of low-discrepancy; in fact "perfectly distributed"
- useful for numeric integration - Monte Carlo methods
- there are no perfect $(t=0) b$-adic nets in $d>b+1$
- for $d \geq 2$ there is $t=t(d)$ so that (t, m, d)-nets exist in any base b

Main result

Theorem (Bilyk, F.)

- the SBI holds in $d=2$ (new, elementary proof).
- $(0, n+1,2)$-net \Longleftrightarrow extremal set for $S S B I$ (i.e., $\arg \max \sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}$ with some $\varepsilon_{R}= \pm 1$)
- $\#\{(0, n+1,2)-n e t s\}=2^{(n+1) 2^{n}}$
- similar for b-adic nets

Main result

Theorem (Bilyk, F.)

- the SBI holds in $d=2$ (new, elementary proof).
- $(0, n+1,2)$-net \Longleftrightarrow extremal set for $S S B I$ (i.e., arg max $\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}$ with some $\varepsilon_{R}= \pm 1$)
- $\#\{(0, n+1,2)-n e t s\}=2^{(n+1) 2^{n}}$ [Xiao '96-‘00]
- similar for b-adic nets

Main result

Theorem (Bilyk, F.)

- the SBI holds in $d=2$ (new, elementary proof).
- $(0, n+1,2)$-net \Longleftrightarrow extremal set for $S S B I$ (i.e., $\arg \max \sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}$ with some $\varepsilon_{R}= \pm 1$)
- $\#\{(0, n+1,2)-n e t s\}=2^{(n+1) 2^{n}}$
- similar for b-adic nets

First formal connection between SBI and discrepancy theory.

Main result

Theorem (Bilyk, F.)

- the SBI holds in $d=2$ (new, elementary proof).
- $(0, n+1,2)$-net \Longleftrightarrow extremal set for $S S B I$ (i.e., $\arg \max \sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}$ with some $\varepsilon_{R}= \pm 1$)
- $\#\{(0, n+1,2)-n e t s\}=2^{(n+1) 2^{n}}$
- similar for b-adic nets

First formal connection between SBI and discrepancy theory.

Reminder: SSBI in $d=2$

For any $n \in \mathbb{N}$ and $\varepsilon_{R} \in\{ \pm 1\}$:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty}=n+1
$$

A new proof in $d=2$: signed case

A new proof in $d=2$: signed case

- Let $\mathcal{D}_{k}=\left\{R=R_{1} \times R_{2}:\left|R_{1}\right|=2^{-k},\left|R_{2}\right|=2^{-(n-k)}\right\}$

A new proof in $d=2$: signed case

- Let $\mathcal{D}_{k}=\left\{R=R_{1} \times R_{2}:\left|R_{1}\right|=2^{-k},\left|R_{2}\right|=2^{-(n-k)}\right\}$
- For each $k=\frac{n+1}{2}, \ldots, n-1, n$,

$$
F_{k}(x)=\sum_{R \in \mathcal{D}_{k}^{2}} \varepsilon_{R} h_{R}(x)+\sum_{R \in \mathcal{D}_{n-k}^{2}} \varepsilon_{R} h_{R}(x)
$$

A new proof in $d=2$: signed case

- Let $\mathcal{D}_{k}=\left\{R=R_{1} \times R_{2}:\left|R_{1}\right|=2^{-k},\left|R_{2}\right|=2^{-(n-k)}\right\}$
- For each $k=\frac{n+1}{2}, \ldots, n-1, n$,

$$
F_{k}(x)=\sum_{R \in \mathcal{D}_{k}^{2}} \varepsilon_{R} h_{R}(x)+\sum_{R \in \mathcal{D}_{n-k}^{2}} \varepsilon_{R} h_{R}(x)
$$

- Start with $k=\frac{n+1}{2}$ (if n is odd)

A new proof in $d=2$: signed case

- Let $\mathcal{D}_{k}=\left\{R=R_{1} \times R_{2}:\left|R_{1}\right|=2^{-k},\left|R_{2}\right|=2^{-(n-k)}\right\}$
- For each $k=\frac{n+1}{2}, \ldots, n-1, n$,

$$
F_{k}(x)=\sum_{R \in \mathcal{D}_{k}^{2}} \varepsilon_{R} h_{R}(x)+\sum_{R \in \mathcal{D}_{n-k}^{2}} \varepsilon_{R} h_{R}(x)
$$

- Start with $k=\frac{n+1}{2}$ (if n is odd)
- In each of the 2^{n+1} cubes of size $2^{-\frac{n+1}{2}} \times 2^{-\frac{n+1}{2}}$ choose a subcube, on which $F_{k}=+2$.

A new proof in $d=2$: signed case

- Let $\mathcal{D}_{k}=\left\{R=R_{1} \times R_{2}:\left|R_{1}\right|=2^{-k},\left|R_{2}\right|=2^{-(n-k)}\right\}$
- For each $k=\frac{n+1}{2}, \ldots, n-1, n$,

$$
F_{k}(x)=\sum_{R \in \mathcal{D}_{k}^{2}} \varepsilon_{R} h_{R}(x)+\sum_{R \in \mathcal{D}_{n-k}^{2}} \varepsilon_{R} h_{R}(x)
$$

- Start with $k=\frac{n+1}{2}$ (if n is odd)
- In each of the 2^{n+1} cubes of size $2^{-\frac{n+1}{2}} \times 2^{-\frac{n+1}{2}}$ choose a subcube, on which $F_{k}=+2$.
- "Zoom in" into these cubes and iterate $k \rightarrow k+1$.

A new proof in $d=2$: signed case

- Let $\mathcal{D}_{k}=\left\{R=R_{1} \times R_{2}:\left|R_{1}\right|=2^{-k},\left|R_{2}\right|=2^{-(n-k)}\right\}$
- For each $k=\frac{n+1}{2}, \ldots, n-1, n$,

$$
F_{k}(x)=\sum_{R \in \mathcal{D}_{k}^{2}} \varepsilon_{R} h_{R}(x)+\sum_{R \in \mathcal{D}_{n-k}^{2}} \varepsilon_{R} h_{R}(x)
$$

- Start with $k=\frac{n+1}{2}$ (if n is odd)
- In each of the 2^{n+1} cubes of size $2^{-\frac{n+1}{2}} \times 2^{-\frac{n+1}{2}}$ choose a subcube, on which $F_{k}=+2$.
- "Zoom in" into these cubes and iterate $k \rightarrow k+1$.
- In the end we have 2^{n+1} cubes Q_{j} of size $2^{-(n+1)} \times 2^{-(n+1)}$, on which all $F_{k}=+2$. Then on each Q_{j}

$$
\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}(x)=\sum_{k=\frac{n+1}{2}}^{n} F_{k}(x)=\frac{n+1}{2} \cdot 2=n+1
$$

A new proof in $d=2$: signed case

Connection to binary nets

- At the initial step each rectangle contains exactly two chosen squares.

Connection to binary nets

- At the initial step each rectangle contains exactly two chosen squares.
- They lie in the opposite quarters of the rectangle, since $\varepsilon_{R} h_{R}(x) \geq 0$

Connection to binary nets

- At the initial step each rectangle contains exactly two chosen squares.
- They lie in the opposite quarters of the rectangle, since $\varepsilon_{R} h_{R}(x) \geq 0$
- At each following step every rectangle R will contain exactly two previously chosen squares.

Connection to binary nets

- At the initial step each rectangle contains exactly two chosen squares.
- They lie in the opposite quarters of the rectangle, since $\varepsilon_{R} h_{R}(x) \geq 0$
- At each following step every rectangle R will contain exactly two previously chosen squares.

- We further choose a sub square in each of those and they have to lie in the opposite quarters of R.

Connection to binary nets

- Since every dyadic R with $|R|=2^{-n}$ contains exactly two of the 2^{n+1} chosen squares, the extremal set is a ($1, n+1,2$)-net in base $b=2$.

Connection to binary nets

- Since every dyadic R with $|R|=2^{-n}$ contains exactly two of the 2^{n+1} chosen squares, the extremal set is a ($1, n+1,2$)-net in base $b=2$.

- Since in every such R these points lie in opposite quarters, it is actually a $(0, n+1,2)$-net in base $b=2$.

Connection to binary nets

- Since every dyadic R with $|R|=2^{-n}$ contains exactly two of the 2^{n+1} chosen squares, the extremal set is a ($1, n+1,2$)-net in base $b=2$.

- Since in every such R these points lie in opposite quarters, it is actually a $(0, n+1,2)$-net in base $b=2$.
- Each dyadic $(0, n+1,2)$-net \mathcal{P} may be obtained this way (may choose ε_{R} so that all terms are +1 on the net!)

Connection to binary nets

- Since every dyadic R with $|R|=2^{-n}$ contains exactly two of the 2^{n+1} chosen squares, the extremal set is a $(1, n+1,2)$-net in base $b=2$.

- Since in every such R these points lie in opposite quarters, it is actually a $(0, n+1,2)$-net in base $b=2$.
- Each dyadic $(0, n+1,2)$-net \mathcal{P} may be obtained this way (may choose ε_{R} so that all terms are +1 on the net!)
- The total number of different binary $(0, m, 2)$-nets is

$$
2^{\#\left\{R:|R|=2^{-n}\right\}}=2^{(n+1) 2^{n}}
$$

Examples of two-dimensional nets

- $\varepsilon_{R} \equiv+1$: Van der Corput set.
$\left(0 . x_{1} x_{2} \ldots x_{n}, 0 . x_{n} x_{n-1} \ldots x_{2} x_{1}\right), \quad x_{k}=0$ or 1

Examples of two-dimensional nets

- $\varepsilon_{R} \equiv+1$: Van der Corput set. $\left(0 . x_{1} x_{2} \ldots x_{n}, 0 . x_{n} x_{n-1} \ldots x_{2} x_{1}\right), \quad x_{k}=0$ or 1
- If ε_{R} depends only on the geometry of R, i.e.
$\varepsilon_{R}=\varepsilon\left(\left|R_{1}\right|,\left|R_{2}\right|\right):$ digit-shifted VdC
$\left(0 . x_{1} x_{2} \ldots x_{n}, 0 .\left(x_{n} \oplus \sigma_{n}\right) \ldots\left(x_{1} \oplus \sigma_{1}\right)\right), \sigma \in\{0,1\}^{n}$
- $\varepsilon_{R} \equiv+1$: Van der Corput set. $\left(0 . x_{1} x_{2} \ldots x_{n}, 0 . x_{n} x_{n-1} \ldots x_{2} x_{1}\right), \quad x_{k}=0$ or 1
- If ε_{R} depends only on the geometry of R, i.e.
$\varepsilon_{R}=\varepsilon\left(\left|R_{1}\right|,\left|R_{2}\right|\right):$ digit-shifted VdC $\left(0 . x_{1} x_{2} \ldots x_{n}, 0 .\left(x_{n} \oplus \sigma_{n}\right) \ldots\left(x_{1} \oplus \sigma_{1}\right)\right), \sigma \in\{0,1\}^{n}$
- If the coefficients have product structure, i.e. $\varepsilon_{R_{1} \times R_{2}}=\varepsilon_{R_{1}} \cdot \varepsilon_{R_{2}}$: Owen's scrambling of VdC. SSBI proved in all dimensions [Karslidis 2015].

A new proof in $d=2$: general case

At each step choose the subcube Q_{j} where

$$
F_{k}(x)=\left|\alpha_{R^{\prime}}\right|+\left|\alpha_{R^{\prime \prime}}\right| .
$$

Then

$$
\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} \geq \max _{j=1, \ldots, 2^{n+1}} \sum_{R \supset Q_{j}}\left|\alpha_{R}\right|
$$

A new proof in $d=2$: general case

At each step choose the subcube Q_{j} where

$$
F_{k}(x)=\left|\alpha_{R^{\prime}}\right|+\left|\alpha_{R^{\prime \prime}}\right| .
$$

Then

$$
\begin{aligned}
\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} & \geq \max _{j=1, \ldots, 2^{n+1}} \sum_{R \supset Q_{j}}\left|\alpha_{R}\right| \\
& \geq \frac{1}{2^{n+1}} \sum_{Q_{j}} \sum_{R \supset Q_{j}}\left|\alpha_{R}\right|
\end{aligned}
$$

A new proof in $d=2$: general case

At each step choose the subcube Q_{j} where

$$
F_{k}(x)=\left|\alpha_{R^{\prime}}\right|+\left|\alpha_{R^{\prime \prime}}\right| .
$$

Then

$$
\begin{aligned}
\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} & \geq \max _{j=1, \ldots, 2^{n+1}} \sum_{R \supset Q_{j}}\left|\alpha_{R}\right| \\
& \geq \frac{1}{2^{n+1}} \sum_{Q_{j}} \sum_{R \supset Q_{j}}\left|\alpha_{R}\right| \\
& =\frac{1}{2^{n+1}} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right| \sum_{Q_{j} \subset R} 1
\end{aligned}
$$

A new proof in $d=2$: general case

At each step choose the subcube Q_{j} where

$$
F_{k}(x)=\left|\alpha_{R^{\prime}}\right|+\left|\alpha_{R^{\prime \prime}}\right| .
$$

Then

$$
\begin{aligned}
\left\|\sum_{|R|=2^{-n}} \alpha_{R} h_{R}\right\|_{\infty} & \geq \max _{j=1, \ldots, 2^{n+1}} \sum_{R \supset Q_{j}}\left|\alpha_{R}\right| \\
& \geq \frac{1}{2^{n+1}} \sum_{Q_{j}} \sum_{R \supset Q_{j}}\left|\alpha_{R}\right| \\
& =\frac{1}{2^{n+1}} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right| \sum_{Q_{j} \subset R} 1 \\
& =2^{-n} \sum_{|R|=2^{-n}}\left|\alpha_{R}\right|
\end{aligned}
$$

Dimension reduction:

Lemma

Let $d \geq 2$. Assume that in dimension $d^{\prime}=d-1$ for all $\varepsilon_{R}= \pm 1$ we have:

$$
\left\|\sum_{|R| \geq 2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d^{\prime}+1}{2}}=n^{\frac{d}{2}} .
$$

Then in dimension d for all $\varepsilon_{R}= \pm 1$ we have:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d}{2}} .
$$

Dimension reduction: "signed" case

Lemma

Let $d \geq 2$. Assume that in dimension $d^{\prime}=d-1$ for all $\varepsilon_{R}= \pm 1$ we have:

$$
\left\|\sum_{|R| \geq 2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d^{\prime}+1}{2}}=n^{\frac{d}{2}} .
$$

Then in dimension d for all $\varepsilon_{R}= \pm 1$ we have:

$$
\left\|\sum_{|R|=2^{-n}} \varepsilon_{R} h_{R}\right\|_{\infty} \gtrsim n^{\frac{d}{2}}
$$

- In dimension $d=2$ equivalent.
- $\left\|\sum_{|R| \geq 2^{-n}} \varepsilon_{R} h_{R}\right\|_{2} \gtrsim n^{d^{\prime} / 2}$
- $d=2 \Rightarrow d^{\prime}=1$: the bound $\left\|\sum_{|I| \geq 2^{-n}} \varepsilon_{I} h_{I}\right\|_{\infty} \geq n$ is trivial.
- $d=3: \sum_{k} \sum_{|R|=2^{-k}} g_{k}$, where $g_{k} \sim \operatorname{Bin}(k, 1 / 2)$ - perhaps $\cap\left\{g_{k}>\sqrt{k}\right\} \neq \phi ?$

Dimension reduction: general case

In dimension $d^{\prime}=1$ a proper analog would be:

$$
\left\|\sum_{I \in \mathcal{D}:|I| \geq 2^{-n}} \alpha_{I} h_{I}\right\|_{\infty} \gtrsim \sum_{|I| \geq 2^{-n}}\left|\alpha_{I}\right| \cdot|I| .
$$

- This would imply the general small ball inequality in $d=2$

Dimension reduction: general case

In dimension $d^{\prime}=1$ a proper analog would be:

$$
\left\|\sum_{I \in \mathcal{D}:|I| \geq 2^{-n}} \alpha_{I} h_{I}\right\|_{\infty} \gtrsim \sum_{|I| \geq 2^{-n}}\left|\alpha_{I}\right| \cdot|I| .
$$

- This would imply the general small ball inequality in $d=2$
- This would imply SSBI in all dimensions $d \geq 2$!

Dimension reduction: general case

In dimension $d^{\prime}=1$ a proper analog would be:

$$
\left\|\sum_{I \in \mathcal{D}:|I| \geq 2^{-n}} \alpha_{I} h_{I}\right\|_{\infty} \gtrsim \sum_{|I| \geq 2^{-n}}\left|\alpha_{I}\right| \cdot|I| .
$$

- This would imply the general small ball inequality in $d=2$
- This would imply SSBI in all dimensions $d \geq 2$!
- Unfortunately this inequality is NOT true in general! (counter-example by Ohad Feldheim, with $\alpha_{I} \in\{0,1\}$)

Related methods in Analysis

SSBI proof by Temlyakov:

$$
\mathcal{H}_{n}=\sum_{R:|R|=2^{-n}} \varepsilon_{R} h_{R}
$$

Related methods in Analysis

SSBI proof by Temlyakov:

$$
\mathcal{H}_{n}=\sum_{R:|R|=2^{-n}} \varepsilon_{R} h_{R}
$$

- Set $f_{k}=\sum_{R:\left|R_{1}\right|=2^{-k}} \varepsilon_{R} h_{R}, \quad k=0,1, \ldots, n$

Related methods in Analysis

SSBI proof by Temlyakov:

$$
\mathcal{H}_{n}=\sum_{R:|R|=2^{-n}} \varepsilon_{R} h_{R}
$$

- Set $f_{k}=\quad \sum \varepsilon_{R} h_{R}, \quad k=0,1, \ldots, n$

$$
R:\left|R_{1}\right|=2^{-k}
$$

- Construct a Riesz product:

$$
\Psi \stackrel{\text { def }}{=} \prod_{k=0}^{n}\left(1+f_{k}\right)
$$

SSBI proof by Temlyakov:

$$
\mathcal{H}_{n}=\sum_{R:|R|=2^{-n}} \varepsilon_{R} h_{R}
$$

- Set $f_{k}=\quad \sum \varepsilon_{R} h_{R}, \quad k=0,1, \ldots, n$

$$
R:\left|R_{1}\right|=2^{-k}
$$

- Construct a Riesz product:

$$
\Psi \stackrel{\text { def }}{=} \prod_{k=0}^{n}\left(1+f_{k}\right)
$$

- $\|\Psi\|_{1}=1\left(\right.$ since $\Psi \geq 0$ and $\left.\int \Psi=1\right)$

SSBI proof by Temlyakov:

$$
\mathcal{H}_{n}=\sum_{R:|R|=2^{-n}} \varepsilon_{R} h_{R}
$$

- Set $f_{k}=\quad \sum \varepsilon_{R} h_{R}, \quad k=0,1, \ldots, n$

$$
R:\left|R_{1}\right|=2^{-k}
$$

- Construct a Riesz product:

$$
\Psi \stackrel{\text { def }}{=} \prod_{k=0}^{n}\left(1+f_{k}\right)
$$

- $\|\Psi\|_{1}=1\left(\right.$ since $\Psi \geq 0$ and $\left.\int \Psi=1\right)$

$$
\Rightarrow\left\|\mathcal{H}_{n}\right\|_{\infty} \geq\left\langle\mathcal{H}_{n}, \Psi\right\rangle=\sum_{R:|R|=2^{-n}}
$$

Related methods in Analysis

SSBI proof by Temlyakov:

$$
\mathcal{H}_{n}=\sum_{R:|R|=2^{-n}} \varepsilon_{R} h_{R}
$$

- Set $f_{k}=\sum_{R:\left|R_{1}\right|=2^{-k}} \varepsilon_{R} h_{R}, \quad k=0,1, \ldots, n$
- Construct a Riesz product:

$$
\begin{gathered}
\qquad \Psi \stackrel{\text { def }}{=} \prod_{k=0}^{n}\left(1+f_{k}\right) \\
\quad\|\Psi\|_{1}=1\left(\text { since } \Psi \geq 0 \text { and } \int \Psi=1\right) \\
\Rightarrow\left\|\mathcal{H}_{n}\right\|_{\infty} \geq\left\langle\mathcal{H}_{n}, \Psi\right\rangle=\sum_{R:|R|=2^{-n}} \varepsilon_{R}^{2}\left\langle h_{R}, h_{R}\right\rangle
\end{gathered}
$$

SSBI proof by Temlyakov:

$$
\mathcal{H}_{n}=\sum_{R:|R|=2^{-n}} \varepsilon_{R} h_{R}
$$

- Set $f_{k}=\quad \sum \varepsilon_{R} h_{R}, \quad k=0,1, \ldots, n$

$$
R:\left|R_{1}\right|=2^{-k}
$$

- Construct a Riesz product:

$$
\Psi \stackrel{\text { def }}{=} \prod_{k=0}^{n}\left(1+f_{k}\right)
$$

- $\|\Psi\|_{1}=1$ (since $\Psi \geq 0$ and $\left.\int \Psi=1\right)$

$$
\Rightarrow\left\|\mathcal{H}_{n}\right\|_{\infty} \geq\left\langle\mathcal{H}_{n}, \Psi\right\rangle=\sum_{R:|R|=2^{-n}} 2^{-n}
$$

SSBI proof by Temlyakov:

$$
\mathcal{H}_{n}=\sum_{R:|R|=2^{-n}} \varepsilon_{R} h_{R}
$$

- Set $f_{k}=\quad \sum \varepsilon_{R} h_{R}, \quad k=0,1, \ldots, n$

$$
R:\left|R_{1}\right|=2^{-k}
$$

- Construct a Riesz product:

$$
\Psi \stackrel{\text { def }}{=} \prod_{k=0}^{n}\left(1+f_{k}\right)
$$

- $\|\Psi\|_{1}=1\left(\right.$ since $\Psi \geq 0$ and $\left.\int \Psi=1\right)$

$$
\Rightarrow\left\|\mathcal{H}_{n}\right\|_{\infty} \geq\left\langle\mathcal{H}_{n}, \Psi\right\rangle=\sum_{R:|R|=2^{-n}} 2^{-n} \approx n
$$

Related methods in Analysis

SSBI proof by Temlyakov:

$$
\mathcal{H}_{n}=\sum_{R:|R|=2^{-n}} \varepsilon_{R} h_{R}
$$

- Set $f_{k}=\quad \sum \varepsilon_{R} h_{R}, \quad k=0,1, \ldots, n$

$$
R:\left|R_{1}\right|=2^{-k}
$$

- Construct a Riesz product:

$$
\Psi \stackrel{\text { def }}{=} \prod_{k=0}^{n}\left(1+f_{k}\right)
$$

- $\|\Psi\|_{1}=1\left(\right.$ since $\Psi \geq 0$ and $\left.\int \Psi=1\right)$

$$
\Rightarrow\left\|\mathcal{H}_{n}\right\|_{\infty} \geq\left\langle\mathcal{H}_{n}, \Psi\right\rangle=\sum_{R:|R|=2^{-n}} 2^{-n} \approx n
$$

- $\Psi \stackrel{\text { def }}{=} \prod_{k=0}^{n}\left(1+f_{k}\right)= \begin{cases}2^{n+1} & \text { if } f_{k}=+1 \text { for all } k, \\ 0 & \text { otherwise } .\end{cases}$

Proofs of Sidon's theorem:

(1) Riesz product: $\prod_{k=1}^{K}\left(1+\varepsilon_{k} \cos n_{k} x\right)$
(2) "zooming in": suppose $n_{k+1} / n_{k} \geq 9$. At step k look at

$$
B_{k}=\left\{x \in[0,1]: \quad \alpha_{k} \sin \left(2 \pi n_{k} x\right) \geq \frac{1}{2}\left|\alpha_{k}\right|\right\}
$$

Each interval of B_{k} contains at least 3 periods of $\sin \left(2 \pi n_{k+1} x\right)$, in particular contains an interval of B_{k+1}. On $\cap B_{k}$ we have $\sum_{k} \alpha_{k} \sin \left(2 \pi n_{k} x\right) \geq \frac{1}{2} \sum_{k}\left|\alpha_{k}\right|$.

Thank you.

b-adic nets

Theorem

Fix $m \in \mathbb{N}$ and $b \geq 2$. For each $R \in \mathcal{D}_{b}^{2}$ with $|R|=b^{-(m-1)}$, choose a function $\phi_{R} \in \mathcal{H}_{R}$.
(i) b-adic SSBI holds: $\max _{x \in[0,1)^{2}} \sum_{|R|=b^{-(m-1)}} \phi_{R}(x)=m$.
(ii) The set on which the maximum is achieved is a ($0, m, 2$)-net in base b.
(iii) Each ($0, m, 2$)-net in base b may be obtained this way
(iv) The number of different $(0, m, 2)$-nets in base b is $(b!)^{m b^{m-1}}$.
$\phi_{R} \in \mathcal{H}_{R}$

$$
\begin{array}{c:c:c}
-1 & 1 & -1 \\
\hdashline-1 & -1 & 1 \\
\hdashline 1 & -1 & -1 \\
1 & 1
\end{array}
$$

